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Abstract. An analytical expression of the pair disttibution function is derived for the car- 
parking problem and for the random sequential adsorption of K-mers onto a onedimensional 
lattice. Both on a lattice and in the continuum limit, super-exponential decay of the disuibulion 
function is observed. A comparison of the spatial correlations with those at equilibrium 
demonstrates the influence of the irreversibility of the RSA process. 

1. Introduction 

Recently, random sequential processes have received a great deal of theoretical and 
experimental attention [I]. The kinetics of protein [Z] and colloid particle adsorption [3] 
appear to be highly irreversible (surface diffusion and desorption are negligible) and can be 
suitably described by the random sequential adsorption model (RSA). In this model, particles 
are placed, one at a time, into a D-dimensional space. If overlap occurs, the placement 
is rejected. Eventually, the system reaches a saturation state in which no more particles 
can be added. The kinetics of this process can be obtained analytically in one dimension 
[4, 61 and on quasi-one-dimensional ladder lattices [7-91. In higher dimensions, computer 
simulation is required because no analytic solution is available. 

Most of the theoretical efforts have concentrated on the kinetics or other macroscopic 
quantities, like the saturation coverage at the jamming limit However, an experimental 
determination of the saturation coverage alone is probably not sufficient to establish the 
irreversible nature of an adsorption process. RSA and equilibrium may be viewed as limiting 
cases of real adsorption processes. Since the adsorbed phase structures are quite different, a 
close examination of these structures can help determine the adsorption mechanism. For this 
purpose, the pair distribution function go), which already plays a central role in liquid-state 
physics, is an important quantity in the investigation of RSA models. Moreover, g(r )  can be 
determined experimentally by monitoring the static structure factor S(k)  via spectroscopic 
techniques. 

Previous analytical studies of spatial correlations in RSA processes [ 10-151 have been 
limited mainly to the case of random dimer filling of a line or to the case of the isomorphic 
model (RSA model with nearest neighbour exclusion). Recently, new results have been 
obtained for adsorption of particles with mutual nearest-neighbour exclusion on some quasi- 
one-dimensional ladder lattices [7,8]. Spatial correlations in more complicated systems have 
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only been studied numerically. Even for the car-parking problem, Burgos and Bonadeo 1161 
obtained the pair distribution function by computer simulation. 

The purpose of this paper is to derive exact results for onedimensional substrates. In 
the second section, using the formal derivation given by Evans et& [13], we obtain an exact 
expression of the pair distribution function for the car-parking problem. The mean-square 
fluctuations of the total number of particles are also calculated and compared to those of 
an equilibrium system. In the third section, the method is applied to the one-dimensional 
lattice versions of this model. We compare, in the last section, the distribution functions 
with those from equilibrium processes. We show also that the spatial correlations decay 
much faster in RSA. 

2. The car-parking problem 

We begin by considering an infinite line, assumed empty at t = 0. Hard rods of length 
1 are dropped randomly and sequentially onto the line, and are adsorbed only if they do 
not overlap previously adsorbed particles. Otherwise, they are rejected. If p ( t )  denotes the 
number density of particles on the line at time t ,  the kinetics of this process is governed by 
the equation 

-- a m  - P(1 = 1, t )  
dt 

where P(1, t )  is the probability of finding an empty interval of length at least I [17]. 
To determine P(1, t ) ,  note that an empty interval of length 1 2 1 can be destroyed by 

inseeing particles within this interval or by partial overlap to the right or to the left sides 
of this interval. The time evolution of the probability function P ( I ,  t )  can be expressed in 
closed form as 

Using the ansatz 

P ( I ,  t )  = expt-(l- 1)tl P( t )  
' 

with the initial condition P( l ,  t = 0) = 1 yields 

By inserting (3) in (I), p(t)  is easily obtained: 

p ( t ) =  l d t '  e x p ( - 2 1  1' -du) 1 - e-u 

U 

(3) 

(5) 

This expression has been derived by Renyi 141 and subsequently rederived by others 16, 181. 
To obtain the spatial correlations, we must consider kinetic equations for higher-order 

distribution functions. Let us denote (1 + 1) as the centre-to-centre distance between two 
adsorbed particles. The hard core interaction prevents overlap of particles, so the pair 
distribution function g(l  + 1) = 0 for ( I  + 1) < 1. p2g(l + 1)dl is the probability that 
centres of two particles located at two given points (1, 2) are separated by the distance 
(1 + 1). Between f and t + dt, a new pair of particles may be created by the insertion of a 
particle at point 1 such that a preadsorbed particle exists at point 2, or by the insertion of a 
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particle at point 2 such that a preadsorbed particle exists at point 1 [ 191. The time evolution 
of the pair distribution function is then given by 

where Q&. I ,  t )  is the probability of finding an empty interval of length at least I ,  at a 
distance I (to the right or to the left side) of a preadsorbed particle The time evolution 
of Q ( l l ,  I ,  t )  can be expressed by considering all possible ways of destruction of available 
space of length 11 and all ways to insert a particle at the distance I of an available space of 
length 11. One obtains, for 11 2 1, 

Min(1.l) 

duQ(li + ~ , l - u , t ) + P ( I ~ , l , I z =  1 , t )  (7) 

where P(I1, I ,  12, f )  is the probability of finding two empty intervals of length I I  and I2 
separated by an unspecified interval of length I .  

As all pairs of intervals ( I 1  , Iz) separated by the distance I can only be destroyed when 
a particle is inserted, the time evolution of P(I1, I ,  12, t )  can also be written in closed form 

where 17 is equal to 
hIiO(l.l) 

du(P(11 +U,~-U,IZ~~)+P(II,I-~U,IZ+U,~)) 

+(I - Min(1, I ) )P(I1  + I2 + I ,  t )  . 

Introducing P(Il,I, Iz, t )  = hz(t )p( l ,  t )  exp[-(l1 + 12 - 2)tl and Q ( l l , I ,  t )  = 
h(t)q(l, f )  exp[-(Il - l)t], the set of equations can be re-expressed as 

where q(1, f )  satisfies 
Min(1.l) 

-- du e-"'q(l- U ,  t )  
at 

and 
Min(1.l) 

du e-"p(I - U, t )  + (1 - Min(1, I ) )  e-('+')'. 
at 

The,solution of (11) and (12) can be obtained for successive intervals ([0,1[, [1,2[, and 
so on), but the calculation rapidly becomes tedious. As the structure of the distribution 
function has a relatively short range even at the jamming limit, we present here results 
only for 0 < I < 2, corresponding to the range in which the g(l + 1, t )  is significantly 
structured. After some manipulations, one obtains for 0 4 1 < 1: p(I,  t )  = exp(-(l + 1)t) 
and q(1, t )  = E h(t) exp(-Ir). Integrating (10) then yields 

g ( l +  1, t )  = - dt't'hz(t')e-'''. (13) 
P2 S' 0 
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Figure 1. DisVibution function for the car-parking problem for various values of the density p. 
The curves from bottom to top correspond to the following sequence: p = 0.25, 0.6 and at the 
jamming limit (- 0.74.. .). 

Hence, at the jamming limit, when I + Of, g ( l  + 1.00) - -ln(l): it thus exhibits a 
logarithmic divergence at contact. Simulation results in two [ZO] and three dimensions 
[21] exhibit the same behaviour. Starting from a geometrical analysis of the s!mcture of 
configurations close to the jamming, Pomeau [22] gives arguments which further support 
this result. 

For 1 < 1 < 2, one finds 

e-(l-l)r - e-(l-l)l' 

X 
t' - ?z 

Figure 1 displays the pair distribution function at three different densities. The minimum 
of this function is located at 1 = 1 for all densities, whereas the contact value increase rapidly 
for densities close to the jamming limit. 

We conclude this section by giving an expression of the spatial Laplace transform 
of the pair distribution and, therefore, a formula for the static-structure factor. For that, 
we introduce the spatial Laplace transforms $ ( s , t )  = J,'" dle"'p(l,t) and G(s, t )  = 

dl e-*'q(Z, t ) .  Equations (7) and (8) can be rewritten as 

and 

t, - 2A(s, t) l;(s,  t )  + e-'B(s, t )  
at 

where 
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and 

Combining (15)-(18), and using the initial conditions j ( s ,  0) = l/s and @(s, 0) = 0, the 
spatial Laplace transform of the pair distribution function 2(s, f) = &+mdle-J1g(l + 1, t )  
can be derived: 

Noting that as s + 0, g(s, t )  + l/s, and using the Tauberian theorem, we obtain, as 
expected, g( l  + 1, t )  + 1 when l + +oo. The static structure factor, S ( k ,  t ) ,  is obtained 
from (19) by the relation 

S(k, t )  = 1 + 2p(t) Re 

In figure 2, we plot S(k ,p )  for various densities (p  p(t)). Compared to the pair 
distribution function, S(k, p )  is more structured. The oscillations results from the short- 
range contributions of g(1 + 1, p) .  

0 1 2 3 4 5 
k/Zn 

Figure 2. Static structure factor S(k ,  p )  for various densities p = 0.25, 0.6, 0.74.. . . 

The mean-square fluctuations (AN') = ( N 2 )  - (N)' of the total number, N, of adsorbed 

(21) 

particles is given by the relation 
(AN') = N S ( k  = 0, t )  . 

Using (19) and (20) yields 
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Figure 3. FluctrUtions and variance of the total number of particles in equilibrium (broken 
curve) and RSA (full curve), as functions of density. 

At low densities or short times, S(k = 0, p )  'v 1 - 2 p  and (AN2) N N ,  as it is the case 
at equilibrium. In figure 3, we plot ( A N z ) / N  and ( A N z ) / L  (where L is the size of the 
system) as functions of the density. The curves corresponding to the equilibrium system are 
also plotted. Fluctuations in RSA are slightly less important than in equilibrium at a given 
density. S(0, p ( t ) )  goes to an asymptotic value around 5 x lo-*. Note that ( A N z ) / N  is a 
decreasing function, whereas ( A N z ) / L  exhibits a maximum. 

3. Pair distribution function for the discrete K-mer case 

The car-parking problem presented above is the scaling limit of the adsorption of K-mers 
onto a one-dimensional lattice when K -+ CO. The above method can be applied to the 
lattice models which relate physically to problems in polymer chemistry [ l ,  5, 61. To 
simplify the kinetic equations and to recover the continuum l i t  easily, we take a rescaled 
deposition rate per K-mer equal to 1/K and we inlzoduce the notation z = ,-IfK. We 
consider the probability PK(k ,  z )  of finding a sequence of at least k vacant sites on the 
lattice. The rate equation for P&, z )  has a closed form 

Integrating (23) yields 

where, for K 2 2, hK(z)  is given by 
PK(k, z )  = zk-K+'h2 K(Z) 

and h l ( z )  = 1 for K = 1. The fraction of covered sites, p&), can be derived from 
PK(k.2):  

(26) B P K ( Z )  
az Z- = -KPK(K, Z )  . 
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Following on integration of (26) and a change of the variable z back to t ,  the fraction of 
covered sites at time t is obtained as 

du) . (27) 
K ( l - e x p ( - ~ / K ) )  1 - ( 1  - u / K ) ~ - '  

U 
P K O )  du exp (-2 1' 

It is easy to verify that explicit integration in (25) can only be done for K = 1 
( P I @ )  = 1 - exp(-t)) and for K = 2 (pz ( t )  = 1 - exp(-2 + 2exp(-r/2))). However, 
the continuum case corresponding to K + +ca may be readily recovered from (26) [6]. 
Furthermore, Bartelt et al [23] have recently obtained a systematic derivation of the 1/K- 
Taylor expaneion for the jamming coverage. 

To obtain the pair distribution function, we define Q ~ ( k 1 ,  k ,  t )  as the probability of 
finding a sequence of k1 vacant sites separated by k (unspecified) sites from a preadsorbed K -  
mer and P ~ ( k 1 ,  k ,  kz, t )  as the probability of finding a sequence of k1 vacant sites separated 
by another sequence of k unspecified sites from a sequence of kz vacant sites. We can then 
write a set of closed equations for the pair distribution function gK(k + K, z):  

where Q ~ ( k i .  k ,  z )  satisfies 

+(ki + kz - 2K 4- Z)Px(kI. k ,  kz. Z) 
Min(k,K-I) 

+ [ P K ( ~ I  + n , k - n , k z , z ) + P K ( k i , k - n , k z + n , z ) l  

+(K - 1 - Min(k, K - I))PK(kI + k + kz, z )  . 
"=I 

(30) 
Introducing the functions PK(kl ,  k ,  k2, z )  = zk:+h+2-zKh2 K(Z)PK(kiZ) and QK(k1,k.Z) = 
z ' I + I - ~  hK(Z)qK(k, z ) ,  equations (28x30) can be rewritten as 

and 
Mio(k.K-1) 

Z a p K ( k , z )  = 2  c Z"pK(k - n, Z) 4- ( K  - 1 - Min(k, K - l ) ) ~ ~ + ~ - l  . (33) az ,l=l ~. . 

As for continuum case, equations (32) and (33) can be solved for successive intervals 
of k .  Therefore, for 0 6 k < K, one finds that pK(k , z )  = Z/LCK-I, q&z) = 
K(l - z)hK(z)zk,  and that gK(k + K, t )  is given by 
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Following algebraic manipulations, one obtains, for K < k c 2 K ,  

I' du (1 - u/K)k-K+' - (1 - u/K)'-~+I 
U - U  

I (1 - u / K ) - ~ - I  - (1 - V / K ) K  

2 -  1 / K  
x (1 - u / K ) ~ - '  [U + (35) 

An expression of the pair distribution function can be obtained by taking discrete space 
Laplace transforms. By defining the generating functions ~ K ( x .  z )  = C c  ~ ' p ~ ( k ,  z )  and 
&(x, 2) = CkzO x qK(k, z ) ,  (32) and (33) can be rewritten as +m k 

Z a'K(x,z) = ~ K ( x , z W K ( x , z )  - Z K ~ ~ ( Z ) B K ( X , Z )  (36) az 
and 

Z a 'K(x,z)  = 2AK(z, i ) j K ( x , z )  + Z X - ~ B K ( X , Z )  (37) 8Z 
where 

and 
K-1 

BK(x ,  Z )  = x ( K  - 1 - n)(xz)"-' . 
*=I 

(39) 

Combining (36>-(39), and using the initial conditions j ( x , z  = 1) = 1/(1 - x )  and 
? ( x ,  z = 1) = 0, the generating function of the pair distribution function &(x, z )  = 

+m k x g K ( k  + K ,  z )  can be derived: 

(40) 

In order to obtain gK(k, t ) .  the inverse discrete Laplace transform of expression (38) must 
be computed. Figure 4 displays the pair distribution function for various values of K .  If 
we introduce I = (k + l ) /K,  the curve gK(I, t ) ,  when plotted as a function of 1, rapidly 
converges towards the continuum case for large K (if I 2 1). 

For lattices, the static structure factor &(q, z )  is defined as 
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Flgure 4. Dishibution function for K-mers m d o m  sequential addition at the jamming limit. The 
curves correspond to the following sequence: K = 2.4.8, 16. The broken curve corresponds 
to the continuum limit. 

If we set gK(k,  z )  = gK(-k,  z )  and note that gK(k .2)  = 0 if k -= K, the static structure 
factor can be re-expressed as 

The mean fluctuation ( A N 2 )  of the total number of particles is obviously related to &(q, z )  
by the relation (AN') = N S K ( ~  = 0.2). 

For K = 2, there exists explicit expressions for the coverage, the pair distribution 
function gz(k + 2, t ) .  the static-structure factor and the fluctuations of number of particles. 
Inserting (25) in (40) for K = 2 yields 

Expanding in power of x, the pair distribution function for dimers is obtained as 

Exploiting the mapping between the random dimer filling and the adsorption of points with 
nearest-neighbour exclusions [12], and dividing the density by a factor of two, we recover 
the pair correlation for random sequential adsorption of particles with nearest neighbour 
exclusion [12, 14, 181. Using expressions (42) and (431, we obtain the same S2(q,z) as 
previously derived by others [12, 141. (Note that Monthus and Hilborst [I41 use a different 
definition for the static structure factor.) 

We pay particular attention to the mean-square fluctuation of particles: 

or 
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Since the number of sites occupied by a dimer is two, the mean fluctuation of occupied 
sites is equal to 4(ANZ). Moreover, since the total number of vacant and occupied sites 
is conserved, their fluctuations are equal. We recover then the result of Cohen and Reiss 
1241 concerning the variance in the number of vacant sites in the RSA of dimers. Finally, 
expression (46) is equivalent to the result given by Pedersen and Hemmer 1151 for particles 
with nearest-neighbour exclusion. 

4. Discussion 

We now proceed to a more detailed comparison of configurations of hard rods either 
generated at equilibrium or by RSA. The distribution function for an equilibrium system 
of hard rods of length unity has been derived [Z] and is given by 

Figure 5. Comparison behveen the equilibrium @token curve) and RSA (full curve) pair 
distribution functions at p = 0.74. 

where for a given I + 1, the sum is extended over those terms for which I + 1 - m remains 
positive. Using results in section 2, we plot in figure 5 both dishibution functions for the 
density of 0.74 (i.e. the jamming limit of the car-parking problem). Larger differences appear 
between equilibrium and RSA when the density increases. A density expansion of the pair 
correlation function shows that the first-order coefficients already differ in these two cases. 
At high density, g,(Z + 1, p) displays additional large oscillations, indicating the increasing 
range of smcture in the liquid. This comparatively large correlated region extends over a 
number of particles approximately equal to 1/(1- p)*, i.e. around 16 at p = 0.74. In RSA, 
the correlation length is small, even close to the jamming limit: g( i+  1, p) is practically flat 
for I z 2. Moreover, at large distances, gq(l + 1, p) goes to 1 exponentially 126, 271. In 
RSA, at large distances, one can obtain the asymptotic approach as follows. When 1 + CO, 
(lOHl2) can be solved and one obtains that p ( l , f )  + h2(t). q(1,t)  + h(r)p( t ) ,  and 
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g ( l +  1, t )  -+ 1. Inserting p(1, t )  = h2(t)  + ed'w(l) and q(1, t )  = h(t)p( t )  + e-"u(l, t )  in 
(lO)-(lZ), one obtains 

2 1  
fi(0 = 7 l-, fiW du (48) 

and 
1 

-- a"("t) lu( l ,  t )  = h(t)p( l )  - / u(u, t )  du . 
a t  1-1 

(49) 

For large 1, we get, from (48), p(1) a 2' (In l)-f/ r(l), where r denotes the gamma function. 
Equation (49) gives the leading term u( l ,  t )  Y -2h(t) p(1). By integrating (lo), the decay 
of the distribution function is then given by 

1 

g ( l +  1,p)  - 1 a - r(l: 1) (i3 ~. 

Hence, faster-than-exponential decay is observed for g( l+  1, p).  This decay is even stronger 
for the car-parking problem than for lattice RSA, which has been derived previously as a 
1/(1+ I)! law for dimers 114, 151, and, more generally, for K-mers 1131. 

In summary, the pair correlation function in RSA is a short-range function at any 
density, characterized by a logarithmic divergence at contact in the jamming limit. Contrary 
to equilibrium, the pair distribution function of the one-dimensional problem contains 
informations valid in higher dimensions as well. Brosilow et a1 [28] studied deposition 
of aligned squares on a plane, and it comes out that the shape of our g ( l ~ +  1, p )  at the 
jamming limit @lotted in figure 1) is similar to the one obtained numerically by them for 
the squares along the horizontal direction. A possible reason for this comes from the fact 
that both systems are composed of oriented objects. Simulation results for the RSA of disks 
1291 on a plane show a less ordered structure. 

Typically, the liquid state is modelled via a set of approximate integral equations for 
the pair distribution function, derived from a hierarchy of equations, in which the higher 
distribution functions are approximated by factorization. It is tempting to investigate these 
functions in RSA as well [19]. In particular, the Percus-Yevick equation relies on the 
factorization of the triplet function, g(1 + 1.1' + 1, p )  = g(l + 1, p)g(l' + 1, p). an exact 
result in one dimension. Unfortunately, in RSA, this relation does not hold even in one 
dimension. However, using the method developed in section 2, one can derive the triplet 
nearest-neighbour distribution function. For 0 < I < 1 and 0 < I' < 1, the triplet distribution 
function is equal to 

which clearly differs from g(2 + 1, t)g(l' + 1, t ) .  An alternative derivation of (51) can be 
done by using the gap-particle-gap distribution function [30]. The RSA pair dishibntion 
function has a short-range structure, but the multi-particle correlations have a highly non- 
trivial behaviour which obscures the derivation of approximate integral equations. 
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